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In 1982 Bobylev@A.V. Bobylev, Sov. Phys. Dokl.27, 29 ~1982!# made a linear stability analysis of the
Burnett equations and showed that beyond a certain critical reduced wave number there exist normal modes
that grow exponentially, concluding that the Burnett equations are linearly unstable. We have partially ex-
tended his analysis, originally made for Maxwellian molecules, for any interaction potential and argue that his
results can be reinterpreted as to give a bound for the Knudsen number above which the Burnett equations are
not valid.

PACS number~s!: 05.20.Dd, 47.20.2k, 51.10.1y
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The question regarding the stability of the solutions to
equations of hydrodynamics for given initial and bounda
conditions has been of utmost importance@1#. In particular,
since hydrodynamic equations for dilute gases are obta
from the Boltzmann equation by seeking, either solutions
power series in terms of Knudsen’s parameter through
Chapman–Enskog method, or as truncated approximat
using Grad’s moment method, and in both cases the trans
coefficients are in principle obtainable for given intermolec
lar potentials, the validity of their solution becomes an i
portant question. In 1982 Bobylev@2# claimed that for the
case of Maxwellian molecules, whereas the Navier–Sto
approximation yields equations which are stable aga
small perturbations, for the equilibrium state characteriz
by constant temperature (T0), constant mass density (r0),
and zero hydrodynamic velocity (u50), this is not the case
for the next approximation in Knudsen’s parameter, nam
for the Burnett equations. In fact he showed that small p
turbations to the equilibrium solution which are periodic
the space variable with a wavelength smaller than some c
cal length are exponentially unstable. This fact is now
ferred to in the literature as Bobylev’s instability.

On the other hand, the Burnett approximation of hyd
dynamics has been recently shown to provide substantial
provement on many features of the flow occurring in seve
problems in hydrodynamics. This is the case for a plane P
seuille flow @3#, and others@4#. But perhaps the most spec
tacular of them arises in the calculation of the profiles o
shock wave at large Mach numbers. There, it has been sh
by many workers in the field that the Burnett approximati
substantially improves the accuracy of the different profi
in the shock wave when compared with the direct Mo
Carlo simulations@5# or molecular dynamics@6#. Neverthe-
less, in the study of this problem, it was found that the so
tions of the Burnett equations do exhibit certain ‘‘instabi
ties’’ that have been associated to Bobylev’s instability@7,8#,
PRE 621063-651X/2000/62~4!/5835~4!/$15.00
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in the case of the time dependent code, or to a bifurcation
a Mach number of value'2.69 in the stationary situation
@9#. Without entering here into a detailed analysis of the
features, which will be soon published, the question is if
results obtained by Bobylev can be sustained for more g
eral models and if affirmative can they be casted in terms
Knudsen’s parameter. This means, can we find a crit
value for Knudsen’s parameter beyond which the solutio
to the Burnett equations are unstable?

The purpose of this communication is to show that this
indeed the case and further we will see that the anal
partially holds true independently of the interatomic pote
tial. This answer provides then a rather clear cut significa
to the gradient expansion in the Chapman–Enskog met
@10# of solving Boltzmann’s equation.

To pursue our objective we start from the conservat
equations which, for the longitudinal flow,u(r ,t)5u(x,t) î ,
are written as

]r~x,t !

]t
1

]

]x
„u~x,t !r~x,t !…50, ~1!

]u~x,t !

]t
1u~x,t !

]u~x,t !

]x
52

1

r~x,t !

]Pxx

]x
, ~2!

]T~x,t !

]t
1u~x,t !

]T~x,t !

]x
52

2m

3k
B
r~x,t ! S Pxx~x,t !

]u~x,t !

]x

1
]qx~x,t !

]x D , ~3!

wherem is the mass,kB Boltzmann’s constant,Pxx(x,t) the
xx component of the pressure tensor andqx(x,t) the x com-
ponent of the heat flux.r(x,t),u(x,t), and T(x,t) are the
local values of the mass density, the velocity and the te
5835 ©2000 The American Physical Society
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perature, respectively. The componentsy and z of momen-
tum conservation give no additional information.

The constitutive equations forPxx andqx contain the hy-
drostatic pressure, the usual Navier–Newton–Fourier con
butions and the Burnett terms, which correspond to the s
ond order in the gradients expansion. The pressure tens
given by @10#
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~4!

and the heat flux, to the same approximation, is
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whereh is the shear viscosity,l the thermal conductivity
and thev’s andu’s are the Burnett coefficients. They hav
been explicitly calculated for hard spheres as well as
Maxwell molecules@10#.

Equations~1!–~5! are the complete set in the Burnett a
proximation that we want to study. They have as a solut
the equilibrium state characterized byu50, r5r0
5constant andT5T05constant. We now wonder if this so
lution is stable under small perturbations. In order to stu
the stability conditions the system is perturbed, in the follo
ing manner:

T~x,t !5T0@11eT8~x,t !#,

r~x,t !5r0@11er8~x,t !#, ~6!

u~x,t !5AkBT0

m
eu8~x,t !,

where all primed quantities are dimensionless and differ
orders in e indicate the order of approximation. We als
define a dimensionless length~s! and time (t8) in terms of
the mean free path (l ), namely

l 5
h0

r0
A m

kBT0
, s5

x

l
, t85

r0kBT0

h0m
t, ~7!
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whereh0 is the shear viscosity evaluated at the temperat
of the equilibrium state. By means of this transformation a
substitution of the constitutive equations~4! and~5! into Eqs.
~1!–~3! we obtain that to first order ine,
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50, ~8!
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, ~10!

wheref 52ml0 /3kBh0 is the Eucken factor andl0 the ther-
mal conductivity at the temperatureT0. The first Sonine ex-
pansion givesf 55/2 @10#, a result which is independent o
the interatomic potential and is in very good agreement w
the experimental data@10#. We shall use this value from now
on. Also, Eqs.~8!–~10! are valid for any interatomic poten
tial.

Let us now introduce normal modes, namely,

r8~s,t8!5 r̃ exp~Vt81 iks!, T8~s,t8!5T̃ exp~Vt81 iks!,

u8~s,t8!5ũ exp~Vt81 iks!, Im~k!50, ~11!

and substitute in Eqs.~8!–~10!. This leads to a system o
three equations for variablesr̃, T̃, andũ whose determinan
must be set equal to zero, a condition that guarantees
existence of a nontrivial solution. This leads finally to th
equation,

18V3169V2k2130Vk2118Vk4F10

3
2

4

9
~u42u21v3

2v2!1
2v2

3 G1
16

3
~v32v2!~u42u2!Vk6145k4

130v2k650. ~12!

Since the previous dispersion relation depends only on
magnitude ofk we will restrict the forthcoming discussio
for positive values ofk.

For the remaining part of the analysis we do require
values of the transport coefficients so we shall use th
computed for Maxwellian molecules and for rigid spheres.
the former case@10#,

u25 45
8 , u453, v252, v353, ~13!

and Eq.~12! reduces to

18V3169V2k2197Vk4214Vk6130Vk2145k4160k6

50. ~14!
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Equation~14! differs from the result obtained by Bobyle
@see Eq.~6! in Ref. @2## in that the last term is four time
larger. However substitution of Eq.~13! into Eqs.~8!–~10!
reproduces the results given by Bobylev@see Eqs.~3! and~4!
in Ref. @2##. It is also pertinent to mention that the corr
sponding equation for the Navier–Stokes approximation
easily obtained from Eq.~15! settingv25v35u25u450 to
yield

18V3169V2k2130Vk2160Vk4145k450, ~15!

which is also given by Bobylev. Also, for rigid spheres w
have

u255.821 875,u452.418,v252.028,v352.418,
~16!

and the polynomial~12! reduces to

FIG. 1. Real parts of the eigenvalues~circles! as function ofk
for the Maxwell model.

FIG. 2. Real parts of the eigenvalues~circles! as function ofk
for the rigid sphere model.
is

18V3169V2k21108.447Vk427.080 06Vk6130Vk2

145k4160.84k650. ~17!

If we now analyze the real part of the roots of Eqs.~14!
and~17! we obtain the behavior shown in Figs. 1 and 2. Th
clearly indicates that there exists a critical reduced wa
number (kc), such that fork.kc there is a root whose rea
part is positive thus implying the existence of an instabil
at kc'2.5 andkc'3.65 for the Maxwell model and rigid
sphere model, respectively.

To interpret this result we recall that Knudsen’s numbe
defined as

K
n
5

l

L
, ~18!

whereL is a characteristic length of the phenomena un
consideration. The main point here is the selection of
characteristic length appropriate to the behavior of norm
modes. Thus for perturbations in the density, velocity or te
perature, this implies that

L215U]r8

]x UY ur8u, L215U]T8

]x UY uT8u,

or L215U]u8

]x UY uu8u.

However all definitions ofL are equivalent and equal tok/ l ,
so thatKn5k and the local values of the Knudsen’s numb
become global quantities. This implies that Bobylev’s resu
may be interpreted alternatively by stating that Burnett eq
tions are stable against small perturbations provided
Knudsen number is smaller thankc . This result may surprise
some readers since presumably the Chapman–Enskog
tion of Boltzmann’s equation is valid only ifKn!1, how
small is never stated. Here however, as in Bobylev’s ana
sis, we have not been concerned with the convergence o
series. On the other hand, as pointed out by Bobylev@2#,
since the Burnett equations are nonlinear it is to be expe
that their nonlinearity leads to the appereance of a fin
number of harmonics for finite times. Thus even if mod
with k.kc are not present one may expect that the non
earities will generate them and so one may be tempted
conclude that our interpretation is incorrect. We have do
calculations to second order in the perturbation„u(x,t)
5AkBT0 /m@eu8(x,t)1e2u9(x,t)#… and will consider only
the case of the hydrodynamic velocity since the results
the density and the temperature are analogous. Assum
that the first order perturbation (u8) corresponds to a single
mode we find that the perturbationu9(x,t) is of the form,

u9~x,t !5u09exp~2Vt812iks!, ~19!

whereu09 is a constant andk andV are determined from the
linear hydrodynamic stability analysis. So, Bobylev’s rema
that higher harmonics are generated by nonlinerities is
but if the real part ofV is negative, which is valid provided
that k,kc as shown in Figs. 1 and 2, then the second h
monic does not give rise to an instability. The same ar
ment can be used to show that the higher harmonics of
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form exp(nVt81niks), where n is a positive integer, are
stable ifk,kc . A more detailed analysis is beyond the sco
of this paper.

Bobylev’s instability and other problems associated w
the Burnett equations, or with the Chapman–Enskog exp
sion, has lead some workers in the field to search for o
ways of dealing with the gradient expansion such as regu
ization techniques proposed by Rosenau@11# and the partial
summation techniques as have been used by Gorban
Karlin and others@12–14#. Other authors have considered
subset or a superset of the Burnett equations@7,8# so that the
corresponding equations are stable under small perturbat
or have used macroscopic arguments to derive Burnett
equations that are free from some problems associated
their origin as power series expansions@15#.

On the other hand, the Navier–Stokes equations are
early stable for all Knudsen numbers as follows from E
~15! @2#, while this is a nice property of them it would b
naive to claim that their description is correct for all Knu
sen numbers as is clear from the following simple order
y

n
,

J.
e

n-
er
r-

nd

ns,
e
ith

n-
.

f

magnitude estimation; under standard conditions, the m
free path is about 1025 cm @10#, for k5103 it follows thatL
is of order 1028 cm which is about the atomic diameter,
distance for which the description in terms of macrosco
quantities~continuum description! is completely unreliable.

The main result of this work is to point out that the h
drodynamic instability found by Bobylev@2# does not come
as a surprise if we realize that the Burnett equations
expected to be valid for small Knudsen numbers. When
condition is not satisfied then there is noa priori reason to
expect that the Burnett equations remain valid and their
stability may be interpreted as a manifestation of the fact t
we are outside of their range of validity. In fact, the value
kc gives a quantitative criterion about the validity limits.
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